RESEARCH NOTE

AlCl₃-Grafted Si–MCM-41: Influence of Thermal Treatment Conditions on Surface Properties and Incorporation of Al in the Structure of MCM-41

Vasant R. Choudhary¹ and Kshudiram Mantri

Chemical Engineering Division, National Chemical Laboratory, Pune-411 008, India

Received July 16, 2001; revised September 14, 2001; accepted September 29, 2001

Grafting of AlCl₃ onto Si-MCM-41 using the reaction of anhydrous AlCl₃ from its CCl₄ solution with terminal Si-OH groups of Si-MCM-41 under reflux at two different concentrations of AlCl₃ relative to Si-MCM-41 has been studied. The influence of thermaltreatment conditions (viz., temperature and gas atmosphere, such as vacuum, static or flowing air, and flowing N2) on bulk and surface properties of the AlCl₃-grafted Si-MCM-41 has also been investigated. The AlCl₃-grafted Si-MCM-41 samples before and after thermal treatment were characterized by Fourier transform infrared, ²⁷Al magic-angle spinning nuclear magnetic resonance, Xray photoelectron spectroscopy, and energy disperse X-ray analysis (EDAX) analysis and also for their surface area and concentration of strong acid sites (measured in terms of the pyridine chemisorbed at 400 $^{\circ}$ C). The incorporation of tetrahedral Al in the MCM-41 structure with the creation of strong acid sites could be accomplished by thermally treating the AlCl₃-grafted Si-MCM-41, particularly in a flow of N_2 at $400^\circ C.$ $$\odot$$ 2002 Elsevier Science

Key Words: AlCl₃-grafted Si–MCM-41; incorporation of Al in MCM-41; thermally treated AlCl₃-grafted Si–MCM-41.

INTRODUCTION

Aluminium chloride (an important Lewis acid catalyst) can be immobilized by grafting it onto the surface of inorganic solids (1–6). AlCl₃ grafting can be accomplished by using the reaction of anhydrous AlCl₃ from nonaqueous solvent with inorganic solids, which creates HCl as a side product. Recently, the grafting of AlCl₃ onto Si–MCM-41 was reported to produce a highly active Lewis acid catalyst for Friedel–Crafts alkylation reactions (7, 8). Earlier studies (3) showed that AlCl₃ grafting by refluxing anhydrous AlCl₃ in CCl₄ solution with SiO₂ results in both 4- and 6-coordinated Al species on the silica surface. Very recently, Jun and Ryoo (7) observed the incorporation of Al in its tetrahedral and octahedral symmetry for AlCl₃-grafted KIT-1 (a mesoporous aluminosilicate molecular sieve with a disordered three-dimensional channel network).

 1 To whom correspondence should be addressed. Fax: (+91)-20-5893401/5893355. E-mail: vrc@ems.ncl.res.in.

Si–MCM-41 (a mesoporous silica) has a highly defective structure with different types of terminal Si–OH groups (9, 10). It is therefore interesting to study the reaction of anhydrous AlCl₃ with the terminal Si–OH groups of Si– MCM-41 for incorporating Al into the structure of MCM-41. The present work was undertaken for this purpose and also for studying the influence of thermal-treatment temperature and gas atmosphere on the incorporation of Al in its tetrahedral and octahedral symmetry and surface properties of the AlCl_x-grafted Si–MCM-41.

EXPERIMENTAL

Synthesis and characterization of Si-MCM-41 (highsilica MCM-41) is given elsewhere (11). AlCl_x-grafted Si– MCM-41 was prepared by reacting anhydrous AlCl₃ with the terminal Si-OH groups of Si-MCM-41, as follows: A mixture of 10 g of Si-MCM-41 and 250 ml of dry CCl₄ was refluxed for 1.5 h, while bubbling moisture-free N_2 (30 cm³ \min^{-1}) through the mixture to remove traces of moisture. Then 4.6 g (34.5 mmol) or 1.33 g (10 mmol) of anhydrous AlCl₃ (Aldrich) was added to the mixture and the resulting mixture was refluxed under the N₂ flow for 3 h. The HCl gas evolved in the reaction between the AlCl₃ and the terminal Si-OH groups of Si-MCM-41 was measured quantitatively using an acid-base titration (by absorbing the HCl gas in an aqueous NaOH solution) as a function of time. After the reaction, the AlCl_x-grafted Si-MCM-41 was filtered and washed with hot CCl4 under dry N2 and the filtrate was analyzed for its AlCl₃ content. The catalyst was dried under vacuum at 80°C and then stored in a desiccator. The AlCl_x-grafted Si–MCM-41 was thermally treated at different temperatures under N₂ and flowing or static air.

The resulting solid material was characterized for its surface area (using a Surface Area Analyzer, Quantachrome, USA), bulk and surface Al/Si and Cl/Al ratios (by EDAX and XPS, respectively), and Al_(tetrahedral)/Al_(octahedral) ratio from ²⁷Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) (using a Bruker MSL 300-MHz NMR

under the following conditions: static field = 7.1 *T*, spin rate = 3 kHz s⁻¹, pulse angle = 1 μ s, and delay time = 100 ms). The strong acid sites on the thermally treated material were measured in terms of the pyridine chemisorbed at 400°C, using the GC pulse technique (12). The IR spectra of the AlCl_x-grafted Si–MCM-41 was obtained using the Nujol technique with a Shimadzu FTIR spectrometer (Model 8300).

RESULTS AND DISCUSSION

Grafting of AlCl₃ on Si-MCM-41

Data on the HCl evolved in the reaction between the terminal Si–OH groups of Si–MCM-41 and anhydrous $AlCl_3$ as a function of the reaction period are presented in Fig. 1. The reaction was stopped when there was no more HCl evolution (i.e., after 3 h) in the reaction.

For AlCl₃ concentrations of 1.0 and 3.45 mmol $g_{(Si-MCM-41)}^{-1}$, Al grafting on Si-MCM-41 was 1.0 and 3.2 mmol $g_{(Si-MCM-41)}^{-1}$, respectively, and the Cl/Al ratio of the grafted AlCl_x-species was 0.83 and 1.43, respectively (Table 1). The change in the Cl/Al ratio from three to one indicates that, in the grafting of AlCl₃, more than one terminal hydroxyl group is involved.

Figure 2 shows that the IR band at about 3730 cm^{-1} , which corresponds to –OH groups of Si–MCM-41, is

FIG. 1. HCl evolved in the grafting of $AlCl_3$ on Si-MCM-41 at different concentrations of $AlCl_3$ in the reaction mixture.

decreased or vanishes after the grafting. This is consistent with the fact that the –OH groups are consumed in the above reactions.

X-ray photoelectron spectrometry XPS analysis showed that the Cl/Al ratio at the external surface of the AlCl₃grafted Si-MCM-41 is lower than the bulk Cl/Al ratio (Table 1). This indicates the involvement of more terminal Si-OH groups from the external surface than from the hexagonal mesoporous channels of the Si-MCM-41 in AlCl₃ grafting. This is expected because of the presence of a larger number of terminal Si-OH groups at the external surface of Si-MCM-41. Also the surface Al/Si ratio is much higher than the bulk Al/Si ratio (Table 1). This shows that the grafting reactions occur to a larger extent at the external surface compared to that in the mesoporous channels. This is also expected because of the larger terminal Si-OH groups present at the external surface of Si-MCM-41. Based on surface and bulk Cl/Al ratios, the Al-containing species formed in the grafting are as follows:

1. For the higher AlCl₃ concentration (3.45 mmol $g_{(Si-MCM-41)}^{-1}$) used in the grafting, in the mesoporous channels (\rightarrow Si-O)AlCl₂ (I) and (\rightarrow Si-O)₂AlCl (II) and at the external surface (\rightarrow Si-O)₂AlCl (II) and (\rightarrow Si-O)₃Al (III)

2. For the lower AlCl₃ concentration (1.0 mmol $g_{(Si-MCM-41)}^{-1}$) used in the grafting, in the mesoporous channels (\Rightarrow Si-O)₂AlCl (II) and (\Rightarrow Si-O)₃Al (III), with II > III, and at the external surface (\Rightarrow Si-O)₃Al (III) and (\Rightarrow Si-O)₂AlCl (II), with III > II

The ²⁷Al MAS NMR spectra of the AlCl₃-grafted Si-MCM-41 are shown in Figs. 3a and 4a. In both cases, two peaks, one at close to 0 ppm and the second at about 54 ppm, are observed. The first and second peaks show the formation of 4-coordinated (tetrahedral) and 6-coordinated (octahedral) Al, respectively, in the AlCl₃ grafting. The Al_(tetrahedral)/Al_(octahedral) ratios in the two AlCl₃-grafted samples are quite different; it is higher for the sample prepared using the lower concentration of AlCl₃ (Table 1).

Incorporation of tetrahedral Al into the structure of Si–MCM-41 using its reaction with aluminium alkoxide in nonaqueous medium has also been reported earlier (13,14).

Effect of Thermal-Treatment Conditions

²⁷Al MAS NMR spectra of the AlCl₃-grafted Si-MCM-41 (Al/Si = 0.06 and 0.17), showing the influence of thermal-treatment conditions (viz., temperature and gas atmosphere) on the relative concentration of the octahedral and tetrahedral Al, are presented in Figs. 3 and 4. The corresponding values of Al_(tetrahedral)/Al_(octahedral), obtained by comparing the area of the NMR peak at about 54 ppm to that at 0 ppm, are included in Table 1. Data on surface composition (Cl/Al and Al/Si ratios at the external surface) and strong acid sites (measured in terms of the pyridine chemisorbed at 400°C) for the thermally

TABLE 1

Concentration of AlCl ₃ (mmol g ⁻¹)	Thermal-treatment conditions			Al/Si ratio			Cl/Al Ratio		
	Gas atmosphere	Temperature (°C)	Time (h)	Bulk	At external surface	$\frac{Al_{(tetrahedral)}}{Al_{(octahedral)}}$	Bulk	At external surface	Acidity (mmol g ⁻¹)
1.0	Vacuum	80	12	0.06	0.31	1.53	0.83	0.20	_
	Air	500	1		_	4.5	0.02	0.01	0.06
	N_2	400	1	_	_	6.4	0.13	0.05	0.08
3.45	Vacuum	80	12	0.17	0.43	0.84	1.43	0.85	
	Air	500	1	_	_	4.6	0.04	0.02	0.13
	N_2	400	1	_	_	8.2	0.20	0.08	0.27
	N_2^2	800	1	0.17	0.006	≈ 0.0	0.087	≈ 0.0	≈ 0.0

Effect of Thermal-Treatment Conditions on Bulk and Surface Properties of AlCl_x-Grafted Si–MCM-41 Prepared Using Two Different Concentrations of AlCl_x in the Grafting

treated samples are also included in Table 1. The influence of thermal-treatment conditions (viz., temperature and gas atmosphere) on thermal stability of the AlCl₃-grafted Si-MCM-41 (Al/Si = 0.17, measured in terms of surface area) is shown in Fig. 5.

From the above results, the following important observations can be made:

1. Thermal treatment of both AlCl₃-grafted Si–MCM-41 samples at 400°C in N₂ and at 500°C in air causes a transformation of octahedral Al into tetrahedral Al to an appreciable extent (Table 1). However, at the higher temperature (800° C) no presence of tetrahedral Al is observed. Thermal treatment at 800° C (under N₂ flow) does not affect significantly the surface area but it transforms all the tetrahedral Al present in the AlCl₃-grafted Si–MCM-41 into octahedral Al, mostly in the form of Al₂O₃. The strong acidity, which is expected due to the presence of tetrahedral Al in zeolites (15, 16), is quite consistent with the changes in the tetrahedral Al caused by the thermal treatments.

FIG. 2. IR spectra of Si–MCM-41 (a) and AlCl₃-grafted Si–MCM-41 obtained using AlCl₃ concentrations of 1.0 mmol $g_{(Si–MCM-41)}^{-1}$ (b) and 3.45 mmol $g_{(Si–MCM-41)}^{-1}$ (c) in the grafting.

2. With an increase in treatment temperature, both bulk and surface Cl/Al ratios of the AlCl₃-grafted Si–MCM-41 are decreased (Table 1), the decrease being more pronounced in the presence of air. This is expected because of the further reaction of AlCl_x species with surface hydroxyls or with the oxygen from air, leading to the formation of AlO_x species during thermal treatment. Also, after the high-temperature (800°C) treatment, the surface Al/Si ratio is reduced drastically, indicating the migration of AlO_x species from the external surface to the mesoporous channels of the MCM-41 during thermal treatment.

3. The Si–MCM-41 with or without AlCl₃ grafting shows highest thermal stability in the presence of flowing

FIG. 3. ²⁷Al MAS NMR of the AlCl₃-grafted Si–MCM-41 (with Al/Si bulk ratio of 0.06) thermally treated under various conditions.

FIG. 4. ²⁷Al MAS NMR of the AlCl₃-grafted Si–MCM-41 (with Al/Si bulk ratio of 0.17) thermally treated under various conditions.

 N_2 and lowest thermal stability in static air (Fig. 5). The observed increase in surface area with increasing temperature in the presence of flowing N_2 (Fig. 5b) is expected because of the removal of adsorbed water from the AlCl₃-grafted Si-MCM-41 at the higher temperatures. The presence of oxygen, particularly when it is accompanied by moisture (which is the case when the thermal treatment is given under static air), during thermal treatment at higher temperatures (above 600°C) is detrimental to both the AlCl₃-grafted Si-MCM-41 and the parent Si-MCM-41.

The above results indicate that the surface properties of AlCl₃-grafted Si–MCM-41 are influenced by both the temperature and the environment used in the thermal treatment.

CONCLUSIONS

Surface and bulk composition (Al/Si and Cl/Al ratios) and relative concentrations of tetrahedral and octahedral Al in AlCl₃-grafted Si–MCM-41 depend strongly on the concentration of AlCl₃, relative to Si–MCM-41, used in the grafting. These compositional properties, and the acidity and surface area (or stability) of the AlCl₃-grafted Si– MCM-41, are strongly influenced by the thermal-treatment

Pretreatment temperature (°C)

FIG. 5. Thermal stability (as expressed by retention of surface area) of (a) Si-MCM-41 and (b) AlCl₃-grafted Si-MCM-41 (with Al/Si bulk ratio = 0.17) (thermal treatment under various gas atmospheres carried out for 1 h).

conditions (viz., temperature and gas atmosphere). The thermal treatment to the AlCl₃-grafted Si–MCM-41, particularly at 400°C in a flow of N₂, results in the incorporation of tetrahedral Al in the MCM-41, creating strong acid sites.

ACKNOWLEDGMENTS

The authors are grateful to Dr. P. R. Rajmohonan and Ms. R. Gupta for the NMR, Mr. A. B. Mandale for the XPS, and Mr. S. Ray for the IR spectra. One of the authors (K. Mantri) is grateful to the Council of Scientific and Industrial Research, New Delhi, India, for a senior research fellowship.

REFERENCES

- Krzywicki, A., and Marczewski, M., J. Chem. Soc., Faraday Trans. 76, 1311 (1980).
- 2. Drago, R. S., and Getty, E. E., J. Am. Chem. Soc. 110, 3311 (1988).

- 3. Getty, E. E., and Drago, R. S., Inorg. Chem. 29, 1186 (1990).
- Clark, J. H., Martin, K., Teasdale, A. J., and Barlow, J., J. Chem. Soc., Chem. Commun. 2037 (1995).
- Clark, J. H., Price, P. M., Martin, K., Macquarrie, D. J., and Bastock, T. W., J. Chem. Res. Synop. 430 (1997).
- Price, P. M., Clark, J. H., Martin, K., Macquarrie, D. J., and Bastock, T. W., Org. Process Res. Dev. 2, 221 (1998).
- 7. Jun, S., and Ryoo, R., J. Catal. 195, 237 (2000).
- Hu, X., Foo, M. L., Chuah, G. K., and Jaenicke, S., J. Catal. 195, 412 (2000).
- Chen, J., Li, Q., Xu, R., and Xiao, F., Angew. Chem. Int. Ed. Engl. 34, 2694 (1995).
- Jentys, A., Phan, N. H., and Vinek, H., J. Chem. Soc., Faraday Trans. 92, 3287 (1996).
- 11. Choudhary, V. R., and Mantri, K., Langmuir 16, 8024 (2000).
- 12. Choudhary, V. R., and Nayak, V. S., Appl. Catal. 4, 31 (1982).
- 13. Mokaya, R., and Jones, W., J. Chem. Soc., Chem. Commun. 2185 (1997).
- 14. Mokaya, R., and Jones, W., Phys. Chem. Chem. Phys. 1, 207 (1999).
- Haag, W. O., Lago, R. M., and Weisz, P. B., *Nature (London)* **309**, 589 (1984).
- 16. Weisz, P. B., Ind. Eng. Chem. Fund. 25, 53 (1986).